Diffusion tensor imaging of the human optic nerve using a non-CPMG fast spin echo sequence.

نویسندگان

  • Steren Chabert
  • Nicolas Molko
  • Yann Cointepas
  • Patrick Le Roux
  • Denis Le Bihan
چکیده

PURPOSE To investigate the diffusion tensor properties of the human optic nerve in vivo using a non-Carr-Purcell-Meiboom-Gill (CPMG) fast spin echo (FSE) sequence. MATERIALS AND METHODS This non-CPMG FSE sequence, which is based on a quadratic phase modulation of the refocusing pulses, allows diffusion measures to be acquired with full signal and without artifacts from geometric distortions due to magnetic field inhomogeneities, which are among the main problems encountered in the orbital area. RESULTS Good-quality images were obtained at a resolution of 0.94 x 0.94 x 3 mm. The mean diffusivity (MD) and fractional anisotropy (FA) were respectively 1.1 +/- 0.2 x 10(-3) mm(2)/second and 0.49 +/- 0.06, reflecting the optic nerve anisotropy. CONCLUSION This non-CPMG-FSE sequence provides reliable diffusion-weighted images of the human optic nerve. This approach could potentially improve the diagnosis and management of optic nerve diseases or compression, such as optic neuritis, orbit tumors, and muscle hypertrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-millimeter Voxel Diffusion Tensor Imaging of the Optic Chiasm

Introduction: Diffusion tensor MRI (DTI) has become a powerful tool for the investigation into tissue architecture and integrity. However, there are numerous anatomical details in the brain that are undetectable at typical DTI image resolution, being 8mm3 voxels, due to partial volume effects and the sequence used in the majority of DTI studies, single -shot EPI, is sensitive to magnetic field ...

متن کامل

Diffusion-weighted radial fast spin-echo for high-resolution diffusion tensor imaging at 3T.

There is a need for an imaging sequence that can provide high-resolution diffusion tensor images at 3T near air-tissue interfaces. By employing a radial fast spin-echo (FSE) collection in conjunction with magnitude filtered back-projection reconstruction, high-resolution diffusion-weighted images can be produced without susceptibility artifacts. However, violation of the Carr-Purcell-Meiboom-Gi...

متن کامل

Diffusion-weighted imaging of the spine with a non-carr-purcell-meiboom-gill single-shot fast spin-echo sequence: initial experience.

BACKGROUND AND PURPOSE To prospectively evaluate the signal-to-noise ratio (SNR) improvement in diffusion-weighted imaging (DWI) of the spine with the use of a newly developed non-Carr-Purcell-Meiboom-Gill (non-CPMG) single-shot fast spin-echo (SS-FSE) sequence and its effect on apparent diffusion coefficient (ADC) measurements. MATERIALS AND METHODS Twenty-four patients were enrolled after w...

متن کامل

Accelerated acquisition and reconstruction of non-CPMG fast spin echo sequences

Introduction: Quadratic phase modulation of the refocusing pulses in a fast spin echo (FSE) sequence [1,2] has been shown to sustain signal magnitude and phase regardless of the signal phase at the beginning of the echo train. This technique, also known as non-CPMG (Carr-Purcell-Meiboom-Gill) FSE, generates two sets of signals in a single echotrain, which typically are saved and reconstructed s...

متن کامل

Assessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences

Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of  non-homogeneity in RF receive and transmit. This can be the most effective source of error in  quantitative  studies  in  MRI  imaging.  Part  of  this  non-homogeneity  demonstrates  the  characteristics of RF coil and part of it is due to the interaction of RF field with the material being  imaged...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2005